
Bridging the Gaps:
Joining Information Sources with Splunk

Jon Stearley Sophia Corwell Ken Lord
Sandia National Laboratories∗

Albuquerque, NM 87185 USA
{jrstear,secorwe,kmlord}@sandia.gov

Abstract
Supercomputers are composed of many diverse com-

ponents, operated at a variety of scales, and function as
a coherent whole. The resulting logs are thus diverse in
format, interrelated at multiple scales, and provide evi-
dence of faults across subsystems. When combined with
system configuration information, insights on both the
downstream effects and upstream causes of events can be
determined. However, difficulties in joining the data and
expressing complex queries slow the speed at which ac-
tionable insights can be obtained. Effectively connecting
data experts and data miners faces similar hurdles. This
paper describes our experience with applying the Splunk
log analysis tool as a vehicle to combine both data, and
people. Splunk’s search language, lookups, macros, and
subsearches reduce hours of tedium to seconds of sim-
plicity, and its tags, saved searches, and dashboards offer
both operational insights and collaborative vehicles.

1 Introduction and Related Work

Logs are a primary source of system debugging informa-
tion, but are rife with analysis challenges [10]. This has
resulted in many tools and techniques, ranging from old
to new and straightforward to complicated. Since its cre-
ation in 1973, grep [14] has been and is still the most
widely used log tool. It is simple and effective, but lim-
ited to only those tasks for which it was named: global,
regular expression, print. Subsetting of data often in-
volves time or other constraints which are difficult or im-
possible to express with regular expressions. Approaches
range from file hierarchies (described in Section 5) to
relational databases. While databases provide efficient
subsetting and logical joins, expression of complex re-
lationships requires considerable fluency with Structured

∗Sandia is a multiprogram laboratory operated by Sandia Corpora-
tion, a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Query Language (SQL), which most administrators lack.
Logzilla [6] hides SQL behind a web interface and pro-
vides graphical reporting, but fails to provide logical
joins. Sawmill [3] provides joins as well as graphical re-
porting, but involves SSQL (Sawmill SQL). In contrast,
Splunk provides these capabilities via a search language
similar to the command syntax administrators are already
fluent with. More complete listings and descriptions of
tools are available elsewhere [1].

Many machine learning techniques have been applied
to aid the process of extracting actionable information
from logs. While a comprehensive survey of these is
overdue, the focus of this paper is practical data join-
ing, so we will provide only a brief note regarding ad-
vanced data mining. Significant effort has been applied
to computer-generated but human-understandable min-
ing rules. Methods include inductive learning [7], clus-
tering [15], genetic algorithms [16], principal component
analysis [17], and support vector machines [8]. Less in-
terpretable results have been obtained via hidden markov
models [18] and non-negative matrix factorization [13].
Independent of algorithm, data preprocessing is a neces-
sary evil to data mining (sometimes surprisingly so!).

The first author of this paper wrote the Sisyphus log
data-mining toolkit [11], which began as a research ac-
tivity, and later matured in usability so that the practi-
cal effectiveness of the mining algorithm [12] could be
evaluated by production administrators. New ideas re-
quire additional preprocessing and development, while
also trying to maintain it as a production tool. While it
possesses useful and unique features, we became aware
that Splunk also possessed distinguishing and valuable
features, most notably the simple and flexible combin-
ing of diverse data, and mechanisms to share knowledge
among people. We thus decided to assess Splunk as a
learning exercise at least, and a potential development
platform at most. This paper is a first view of our find-
ings.

We first provide a brief description of log analysis

in the context of supercomputers. Rather than provide
a comprehensive table of log samples, we will include
them as case studies throughout the paper, where we de-
scribe Splunk features including lookups, macros, and
subsearches. Each section compares methodologies with
and without Splunk. We then provide some comments
on the needs and challenges of multidisciplinary collab-
oration. Finally, we provide some concluding remarks.
This paper is intended neither as a tutorial nor commer-
cial for Splunk, but rather an account of the advances it
has enabled us to make on these fronts.

2 The Red Sky Supercomputer

We have deployed Splunk at Sandia National Labora-
tories (SNL) for supercomputers, security, and desktop
systems. Its use on the latter two have enabled new cor-
relative analysis across both our New Mexico and Cali-
fornia sites. But the focus of this paper is on supercom-
puters, and although we use it on multiple such systems,
we describe Red Sky as a representative case.

Red Sky is Sandias newest High Performance Com-
puting (HPC) Linux Supercomputer built in partnership
with SUN Microsystems. With 5,386 nodes having
43,088 cores, the system is designed to provide over 505
TFLOPS of capacity-class compute cycles to Sandias
HPC community. At 32 KW per rack, it is the greenest
supercomputer deployed at SNL to date due to energy-
efficient technologies including leakage-limiting power
distribution systems, Nehalem processors, and liquid-
cooled rack-doors. It is also the worlds first Infiniband
cluster using a 3D mesh/torus network topology. Fur-
thermore, its center section of can be physically switched
among two service sections of different security levels, in
order to maximize its programmatic availability.

As necessary background for future sections, we will
now describe the physical hardware layout. Red Sky’s
36 racks are arranged in four rows (named a-d) and
nine columns (1-9). Each rack contains four chassis
(1-4), each chassis has twelve slots, each slot contains
two nodes, and each node has two quad-core CPUs.
Each chassis also contains a chassis management mod-
ule (CMM) which manages and monitors chassis compo-
nents, including two Infiniband switches (a and b) each
having 36 ports. The switches are connected in a 3D
mesh, with loops in each direction. Each switch (and
node) has an x, y, and z location in the network, upon
which the routing algorithm depends.

Nodes within the system are configured to have differ-
ent roles. There are administrative nodes, login nodes
(where users actually log in), compute nodes (where
applications actually run), I/O nodes (which provide
disk access), boot nodes (the compute nodes are disk-
less), and gateway nodes for external access. Nodes

roles, client/server relationships, physical and network
locations, and other information is stored in a Genders
database [5]. Node hostnames indicate their logical role,
whereas switch and CMM hostnames indicate their phys-
ical location. All of these components (and others) gen-
erate logs. Our point in all this is that there are multi-
ple layers of hierarchies in the system (we have provided
only a taste), and components are managed (queried, re-
booted, configured, etc) in various physical and logical
groups.

Log messages describe events regarding both local and
remote conditions. For instance, the message

do madrpc failed; dlid 0; 0,1,7,7,28,7,1,8,28,1,18

indicates that the reporting device can no longer commu-
nicate with the device at the end of the 0,1,7... route.
The route is interpreted as: transmit on port 0, then on
the next device in the network transmit on port 1, and
so on, with port 18 being the final transmission in this
case. Decoding messages can be tedious, not to men-
tion studying the distribution of events across physical or
logical dimensions. These tasks are however, essential to
the successful management and debugging of the system
as a whole.

Supercomputers exist to run applications for users.
Users submit requests for a certain number of compute
nodes, having certain capabilities (memory size or access
to certain filesystems for instance), for a certain amount
of time. These requests are called “jobs”. Distinct ap-
plications and users generally stress subsystems in dis-
tinct ways, resulting in distinct log signatures. When a
node finishes a job, the scheduling subsystem may start
a new job on it within the same second, which is also
the time granularity of most logs. Thus, associating error
messages with applications or users requires mapping to
what job was running on what node at what time.

Lastly, configurations change with time. Due to the
routing algorithm, the removal of a single node from
the network can result in literally millions of node-to-
node route changes through the system - an event which
does in fact occur multiple times each day. Less fre-
quently, software is upgraded, roles are changed, param-
eters tuned, and hardware is replaced. Tracing the causes
of log messages as a function of these changes is ex-
tremely challenging.

We have described in broad strokes the log analysis
environment which supercomputers present. As the sys-
tems and their workload are extremely valuable, it is im-
portant that administrators isolate and resolve problems
efficiently.

3 Incorporating Physical Information

Every five minutes, Red Sky records the values of its
many physical sensors including voltages, currents, fan

2

d4-cmm2: PS1/V 12V | 98h | ok | 10.1 | 12.36 Volts
b1-cmm3: PS1/S0/I 12V | A2h | ok | 10.1 | 112.50 Amps
c3-cmm4: BL1/VPS | F1h | ok | 41.1 | 520 Watts
a6-cmm1: PS1/FAN2/TACH | 9Dh | ok | 29.38 | 12300 RPM
d6-cmm4: PS1/T AMB | 95h | ok | 10.1 | 24 degrees C

Table 1: Sample environmental monitoring logs.

speeds, and temperatures. This results in one new file
containing 11,520 lines every five minutes. Sample lines
are shown in Table 1. Tokens are delimited by |, the
first token identifies the reporting CMM and sensor, the
last token indicates its value, and the middle tokens
provide additional logical or physical values which we
will not explain here. As mentioned previously CMM
names indicate their physical location and are formatted
as RC-cmmS where R is the row, C is the column, and S is the
shelf number. Each CMM monitors many subsystems
and each subsystem contains many sensors, identifiable
as subsystem/subsystem/.../sensor.

These files can of course be searched with grep. For
instance
grep degrees /ras/spool/sdr/2010.04.14/cmm-14.55.02 |

grep d6

shows all lines for temperatures in rack d6 on April 14
at 2:55 PM. Having to specify the exact file is tedious,
let alone finding only temperatures above a certain
threshold. Prior to deploying Splunk, a 654-line Perl
script was written which determines the most recent
file, extracts values based on command line arguments,
and displays them in a (hard-coded) colorized grid
corresponding to device location (row, column, shelf). It
can also monitor for new files, thus providing valuable
by-eye monitoring capabilities.

3.1 Setup
We then configured Splunk monitor and parse these logs,
in the following manner. First, two lines were added
to its inputs.conf file so it would monitor the correct
directory:

[monitor:///ras/spool/sdr/]

sourcetype=sdr

Where sdr is the name we gave this type of log. Next,
four lines were added to transforms.conf so the first
word on each line would be used as the reporting host:

[hostfirst]

DEST KEY = MetaData:Host

REGEX = ˆ(\S+):

FORMAT = host::$1

Where hostfirst is our name for the transformation rule.
Finally, three lines were added to props.conf to use the
above rule, and parse two fields of our naming (value,
and units):

[sdr]

TRANSFORMS-host = hostfirst

EXTRACT-value = |\s+(?<value>\S+) (?<units>[ˆ|]+)\$

These did require some effort to get correct, but are
not particularly complex regular expressions, and are
easily generalized for the other log types described in
this paper. Since no timestamps appear in the messages,
Splunk correctly uses the file modification time. It
automatically parses many logs, but is configurable for
uncommon types such as our sdr.

Now, the latest temperatures in rack d6 above 20 de-
grees are found with the command
splunk search "minutesago=5 degrees d6 value>20".
The search language assumes implicit AND conditions be-
tween all search criteria, explicit AND and OR can be used
for arbitrarily complex logic. Splunk’s web interface as-
sumes spunk search so we will omit it in future examples.
A plot of the ten hottest temperatures in the system over
time (see Figure 1 top) is obtained by the search
degrees | timechart value by host

Summary statistics are also easily obtainable (Figure 1
middle and bottom). Results for voltage, fan speed, etc
can be similarly simply obtained. Splunk searches can
auto-refresh at for by-eye monitoring, or send notifica-
tions (including plots) upon trigger conditions (such as
exceeding temperature thresholds). These are brief ex-
amples of Splunk’s ease and usefulness for single sources
of information.

3.2 Lookups

We are now ready to describe combining physical
configuration with physical monitoring logs via lookups.
Whereas Splunk can extract information from external
databases, we just created a text file (based on Genders)
with columns for host, row, col, rack, shelf, slot,

x, y, and z fields. Fields are comma separated, and
each line relates the values like a row in a database. By
defining the lookup in transforms.conf:

[genders]

filename = genders.csv

these fields are now also available in searches and
reports. For example,
degrees | lookup genders host OUTPUT shelf | stats

min(value),average(value),max(value) by shelf

yields shelf-wise temperature summary statistics. An
explanation of the search is: find all events including the
word degrees, for each resulting event, lookup the value
of shelf for each host, then calculate the minimum,
average, and maximum value within each shelf. In
this manner, Splunk’s lookup command performs joins
with system configuration information, without SQL or
extensive scripting.

The following two lines in props.conf tells Splunk to
perform the lookups automatically:

3

Figure 1: Temperature Plots from Splunk. Top - hottest
ten reporting devices. Middle - Summary statistics. Bot-
tom - hottest temperature per shelf. Note that plots do
not share common time ranges.

[sdr]

lookup table = genders host OUTPUT row col rack

shelf slot x y z

So the below search is now valid:
degrees | stats max(value) by rack

However, we will include the explicit lookups in exam-
ples for clarity.

We also configured Splunk to monitor a log of
per-port errors on all the Infiniband network switches,
and a lookup mapping routes to destinations (which we
named links). An example of particular significance is
below, which indicates bit errors in received network
data: Errors for 0x21283a8b120050 "b2-nem4-b" GUID

0x21283a8b120050 port 21: [SymbolErrors == 2] Link

info: 603 21[] ==(4X 10.0 Gbps Active/ LinkUp)==>

0x5080020 0008d57e4 1627 1[] "HCA" ()

The following Splunk search produces the average
number of SymbolErrors per host slot over the last 30

days:
daysago=30 SymbolErrors | lookup links host port

OUTPUT sender | lookup genders host AS sender OUTPUT

slot | stats avg(SymbolErrors) by slot

Reading from left to right, the command means: find
SymbolError events within the last 30 days, for each
of these lookup the host which sent the data (based on
the receiving switch host and port), then lookup the slot
the sender is in, and finally calculate slotwise averages
of SymbolError counts. While the search is somewhat
lengthy, it accomplishes in a single line a task that
previously took multiple manual steps involving grep,

awk, hostspec, Perl, and a plotting package. Certain
slots have in fact been identified as being significantly
prone to SymbolErrors, currently believed to be due to
manufacturing defects.

Once a search such as the above has been written, it
can be saved and shared with a few clicks, enabling reuse
by the author or others.

4 Incorporating Workload Information

As described earlier, user jobs are requests for a certain
number of nodes for a certain duration of time. Distinct
users and applications can result in distinct log messages.
Job-centric analysis of logs is a therefore a key manage-
ment task. However, jobs range in size from 1 to thou-
sands of nodes, and can last seconds to days.

We will now describe the process of attributing
messages to jobs without Splunk. A syslog message of
significant interest is
Jul 7 03:01:56 rs808 Out of memory: Killed process

5427 (pvserver-real).

Out of memory errors (OOM) indicate a failure because
one or more nodes assigned to the job used more than
the available memory on the node. The nodes on Red
Sky have 12 GB of memory, and no swap is available.
The troubleshooting for these types of failures includes
determining if the application is attempting to use more
memory than is installed, or if there is a hardware
problem on the node. However, the messages do not
provide information about the job id that generated these
errors, nor does it give information about the user who
was running the job. The most efficient way to obtain
this information is via the sqlog -n rs808 command,
which returned:
JOBID PART NAME USER ST START TIME N NODELIST

169357 nw pvserver fred F 04/08-20:26:47 31:33 128

rs[81-97,126-154,188-189,191-223,242-252,260-266,268-289,

790-797,808,810-813,817-836,838-843,880-887,

1170-1179,1181-1184,1186-1191,1193-1195]

Because the time of the OOM message is after the job
started and before it ended, and rs808 is in the nodelist,
we can attribute the message to this job. While straight-

4

forward, this quickly becomes tedious, particularly for
large or short jobs.

Did other nodes in the job also experience OOMs?
If yes, we should follow up with fred regarding his
memory usage, as the OOM condition is only visible
from the system perspective - which he is not sufficiently
privileged to view. The user-visible logs provide only
the following message:
slurmd[rs808]: *** JOB 169357 CANCELLED AT

2010-07-7T03:01:56 DUE TO NODE FAILURE ***

So whereas many nodes in the job may have OOM’d,
fred’s logs indicate only a (single) node failure. Given
this information, he is likely to believe it is a system
problem (which it may or may not be), and resubmit.

On the other hand, if only one node in the job
generated an OOM, we should investigate that node for
problems. And so we turn to the syslogs for the answer.
On RedSky, syslogs from all nodes are saved in a single
file (containing 28 million lines from the last 33 days in
this case), so determining if other nodes in the job had
OOMs during the job is performed as follows. First, the
command
hostspec -d ’|’ -w rs[81-97,126-154,...]

is given, which expands the hostlist into a list of nodes
delimited by | characters (which grep interprets as a
logical OR). Next, this is copied into the command
grep -E ’rs81|rs82|rs83...’ /var/log/messages | grep

"Out of memory"

The administrator can then scroll through the output, and
examine message timestamps to determine which ones
occurred during the job. The next step is to look at other
messages in the job, so the second grep in the above is
omitted, yielding many more lines to scroll through.

On another Sandia system, syslogs are instead saved
into HOST/DATE files, in which case hostspec is used to
delimit the node list with commas, and then
cat /logs/{rs81,rs82,...}/2010-07-0{6,7} | less

is used. Here the file hierarchy are used to limit the
amount of extra lines that must be scrolled to (before and
after the job), as the shell expands the curly brackets to
only the correct hosts and only two days.

These are just the steps to view job logs. The manual
process of combining with genders or other information
sources is similar - command, mouse-copy, command,
redirect to a file, parse with awk, pipe into other com-
mands. Our former methods of job-centric log analysis
were long and tedious.

4.1 Eventtypes, Tags, and Time-Sensitive
Lookups

We define an alert as a message which warrants the at-
tention of a system administrator. There are many types
of alerts, corresponding to many types of conditions and

faults within the system. Regular expressions are typi-
cally used to describe such messages, and Splunk pro-
vides this capability as well, called “eventtypes”. We
defined an eventtype for each known alert. We then
assigned a Splunk “tag” of alert (our name), thereby
grouping them as the set of all alerts. The simple search
tag=alert then yields all alert messages. As before, each
Splunk user can define their own eventtypes and tags,
and share them with others. Eventtypes can include ex-
planatory notes, and if additional explanation is needed
the owner is visible. This is another excellent vehicle to
capture and share knowledge.

By adding a time field to Splunk lookup tables, they
become time sensitive and perform like a relational
database with implicit time conditions. Via cron, we
maintain a file for job lookups, containing the start time,
job ID, user name, and node (one such line for each node
in the job). For instance, the line
2010-04-08 20:26:47, 169357, fred, rs808

will result in lookups on host=rs808 returning user=fred

for events at and after that time. Corresponding end times
can be set via empty values of job and user.

By using the jobs lookup table, messages can now be
easily associated to jobs. For example, search
hoursago=6 tag=alert | lookup job host OUTPUT user

job | search user=fred | ctable eventtype job

yields a count of each eventtype for each job run by
user=fred in the last six hours. Similarly,
earliest=-12hr latest=-6hr tag=alert | lookup job

host OUTPUT job user | stats count by date hour host

job user eventtype

yields a table of how many of each type of alert occurred
on each host, associated with the user who was running a
job on the node at the time, over a six hour time window
of interest. Sample output from this command is given in
Table 2). Splunk has enabled us to ask harder questions
in easier ways - the above search means “what is the
distribution of alerts versus time, job, user, and type?”
As before, subsequent lookups can be performed, results
filtered or aggregate at various scales, plots generated,
or results saved to files.

As a followup to the 0,1,7,7,28,7,1,8,28,1,18 mes-
sage in Section 2, chained route and job lookups reveal
strong correlations to certain users. The condition affects
the entire system, as the network management subsys-
tem becomes non-responsive to requests for new connec-
tions. That (non-root) users can effect such conditions
indicates weaknesses in the system. Identifying the pre-
cipitating users and applications allows us to reproduce
the faults at will, and drill down to the actual root of the
problem. Splunk’s painless decoding of such messages
enables much quicker problem resolution.

5

hour host job user eventtype count
---- ------ ------ ---- ------------ -----
10 rs1554 546324 fred ecc:cpu:bank 36
10 rs184 599740 barney lustre 1
11 rs1554 546324 fred ecc:cpu:bank 37
11 rs575 546324 fred ecc:cpu:bank 3
12 rs1554 546324 fred ecc:cpu:bank 36
14 rs1161 602904 wilma oom 2
14 rs1204 602904 wilma oom 4
14 rs311 546398 betty ecc:cpu:bank 3
15 rs1042 546716 dino lustre 1
15 rs1043 546716 dino lustre 1

Table 2: Search result of eventtype count per hour, host,
job, and user (anonymized). Easy generation of such
tables is a huge step forward (Splunk handles all the
bucketing of events), enabling the next steps of exam-
ining distribution over factors of interest (time, host, and
workload in this case), and identifying their root cause.
Splunk provides easier ways to ask harder questions.

5 Following the Data: Subsearches and
Macros

Splunk macros and subsearches further simplify the
process. A subsearch is when results from one search
are used as criteria for another. Just as job information
is accessible via sqlog, it is also in logs, such as the
following line from the “moab” resource management
subsystem:
03:02:01 1278493321:3232662 job 611909 JOBEND 4

36 wilma wilma 52020 Completed [ak:1] 1278467334

1278467337 1278467337 1278493316 - - - >= 0M

>= 0M - 1278467334 64 0 -:- - FY101234 - - 0

0.00 slurm 1 0M 0M 0M 1278467334 2140000000

rs177,rs718,rs719,rs720 slurm - - [DEFAULT] - -

0.00 - - - 0,NAccessPolicy=SINGLEJOB - -

Where 611909 is the job id, start and end times are
1278467337 and 1278493316 (as seconds since Jan 1,
1970), running on the nodes rs177,rs718,rs719,rs720.
We configured Splunk to monitor and parse this log, We
then added the following to macros.conf:
[job(1)]

args = jobid

definition = [search sourcetype=moab job=$jobid$ |

head 1 | makemv delim="," nodes | mvexpand nodes

| eval query = " time>=" . start . " time<= "

. end . " " . nodes | fields + query | format

maxresults=1000]

The definition reads: find the most recent moab message
regarding the given job id, expand the nodes field by
commas, construct a new query using job start and end
as time filters and job node names as content filters, and
execute it (square brackets). While the construction of
the macro required learning to speak Splunk, now that it
is done, the simple search
‘job(611909)‘

yields all syslog messages from nodes in that job
between start and end times - simple! We then added
a Splunk “field action” (easy to do) which invokes the
macro when the job field of a message is clicked on. The
log review process is now:
tag=alert

and then click on a job id field in any of the resulting
messages to see all the logs from the job generating that
alert. As before, results can be bucketed along factors
of interest, plotted, or tabled as desired. With Splunk,
job-centric log analysis has become trivial!

As another example, when jobs die, administrators can
run sinfo with various arguments to identify if any nodes
are in a down state, and then go find and review the ap-
propriate logs for clues as to why. We wrote a macro
which finds the down event in the log, and then displays
then preceding ten minutes of logs from that node (the
number of minutes is an optional argument to the macro).

6 Collaborative Amalgam

Supercomputers are a big enterprise. They involve not
only many pieces but many people, each with specialized
skills and focussed priorities. While machine learning
offers promise of more automated solutions, researchers
with access to logs but not log experts are left to the va-
garies of the logs, and are at significant risk to incor-
rect assumptions and interpretations [4, 10]. Conversely,
administrators without new methods risk limitation to
yester-year’s capabilities.

Bridging these gaps presents both challenges and op-
portunities. By understanding the problems with todays
systems, designs for tomorrows can be improved. This
is true both for faults, and the fault data itself. Under-
standing the information quality and quantity of todays
logs enables higher signal to noise in the future. While
improving message quality and format is worthwhile [9],
if statistical design of experiments methodology (for in-
stance) were taken into account in supercomputer de-
signs, perhaps the architectures themselves can facilitate
the confident diagnosis of system problems. Splunk does
a great job at scraping data from various sources and
helping us making sense of it, but the data is of the pot-
pourri “whatever happens to be available” flavor rather
than the intentional “this data is sufficient to isolate the
root cause” type.

We have described examples of how Splunk’s search
language, lookups, macros, and subsearch features have
simplified our log analysis processes. We have also de-
scribed how eventtypes, tags, and saved searches are a
mechanism to capture and share knowledge. Splunk also
has dashboards, which are collections of saved searches
- plots, tables, event displays, whatever - and are also
sharable. In addition, all searches are logged, enabling

6

ranking of methods based on usage (and implicitly their
practical usefulness), and study of how search sessions
evolve (and implicitly the driving thought processes).

Whereas we have experienced some success in these
areas, there is of course room to grow. The concept of
linguistic relativity [2], seems relevant regarding cross-
team collaboration in general, and the adoption of Splunk
for our purposes in particular. It “is the idea that differ-
ences in the way languages encode cultural and cognitive
categories affect the way people think, so that speakers of
different languages think and behave differently because
of it.” The administrators of world-class supercomputers
are world-class users of the UNIX command line. They
think in terms of commands invoked in parallel across
sets of components, in bash, grep, awk, Perl, etc. Felt
need and interest to learn new languages and tools varies
from person to person.

This is certainly also true of machine learning re-
searchers - each has their own set of languages, skills,
and tools. Different groups are used to asking different
questions, and sufficiently contextualizing them to new
domains is challenging. New tools must have both killer
features and palatable learning curves.

7 Conclusions

Supercomputer logs are nearly as complex as the sys-
tems which generate them. We have provided exam-
ples (in some excruciating detail) of supercomputer logs
and analysis processes, with and without Splunk. While
we do not profess that Splunk solves all our analysis
needs perfectly and completely, it has undoubtedly re-
duced hours of tedium to seconds of simplicity.

Having benefitted in operations methods, knowledge
capture, and data preprocessing, we are moving to in-
corporate additional sources of information including
routes, software versions, and configuration changes
(which are version controlled, thus we have a time-
line of what changed when). We are also exploring
Splunk’s more advanced analysis functions, and exten-
sibility via custom search commands. Open questions
include: which distributions of events over which factors
(time, host, user, etc) are statistically significant, what
correlations among subsystems exist, and what mining
algorithms make a production impact? We want to un-
derstand the practical effectiveness of data mining tech-
niques to help supercomputer administrators solve prob-
lems faster. In our opinion, Splunk provides both com-
pelling features for today, and a platform for exploring
new methods for tomorrow.

8 Acknowledgements

First and foremost Jon thanks Jesus Christ, the great
reconciler (2 Corinthians 5:17-21). Thanks to Matthew

Bohnsack, Chris Beggio, Monzy Meerza, Jerry Smith,
Donna Brown, Joe Mervini, Joel Vaughan, Scott
Mitchell, Randal Laviolette, and all the other experts
who have contributed time, effort, and ideas to this ef-
fort! Thanks also to Dan Goldburt, Anna Tant, Stephen
Sorkin, Erin Sweeney, and other Splunkers for great sup-
port and a great product!

References
[1] http://www.loganalysis.org/.

[2] Sapir-Whorf Hypothesis. http://en.wikipedia.org/wiki/Linguistic relativity.

[3] Sawmill log analysis tool. http://www.sawmill.net/.

[4] Usenix Failure Data Repository.
http://cfdr.usenix.org/data.html#hpc4.

[5] CHU, A. https://computing.llnl.gov/linux/genders.html.

[6] DUKES, C. LogZilla. http://nms.gdd.net/index.php/LogZilla.

[7] LEE, W. Applying data mining to intrusion detection: the quest
for automation, efficiency, and credibility. SIGKDD Explor.
Newsl. 4, 2 (2002), 35–42.

[8] LIANG, Y., ZHANG, Y., XIONG, H., AND SAHOO, R. Fail-
ure prediction in ibm bluegene/l event logs. In Proceedings of
the 2007 Seventh IEEE International Conference on Data Min-
ing (2007).

[9] MITRE. Common Event Expression - A standard Log
Language for Event Interoperability in Electronic Systems.
http://cee.mitre.org/.

[10] OLINER, A. J., AND STEARLEY, J. What supercomputers say:
A study of five system logs. In Proceedings of the 2007 Interna-
tional Conference on Dependable Systems and Networks (DSN)
(2007).

[11] STEARLEY, J. Sisyphus—a log data mining toolkit.
http://www.cs.sandia.gov/sisyphus, 2008.

[12] STEARLEY, J., AND OLINER, A. J. Bad words: Finding faults in
spirit’s syslogs. In Workshop on Resiliency in High-Performance
Computing (Resilience) (2008).

[13] THOMPSON, J., DREISIGMEYER, D., JONES, T., KIRBY, M.,
AND LADD, J. Accurate fault prediciton of bluegene/p ras logs
via geometric reduction. In 1st Workshop on Fault-Tolerance for
HPC at Extreme Scale (FTXS 2010) (2010).

[14] THOMPSON, K. grep - global regular expression print.
http://en.wikipedia.org/wiki/Grep, 1973.

[15] VAARANDI, R. A data clustering algorithm for mining patterns
from event logs. In Proceedings of IEEE International Work-
shop on IP Operations and Management (IPOM) (October 2003),
pp. 119–126.

[16] WEISS, G. M., AND HIRSH, H. Learning to predict rare events
in event sequences. In Proceedings of the 4th ACM SIGKDD, In-
ternational Conference on Knowledge Discovery and Data Min-
ing (1998), pp. 359–363.

[17] XU, W., HUANG, L., FOX, A., PATTERSON, D., AND JORDAN,
M. I. Detecting large-scale system problems by mining console
logs. In SOSP ’09: Proceedings of the ACM SIGOPS 22nd sym-
posium on Operating systems principles (New York, NY, USA,
2009), ACM, pp. 117–132.

[18] YAMANISHI, K., AND MARUYAMA, Y. Dynamic syslog min-
ing for network failure monitoring. In Proceedings of the 11th
ACM SIGKDD, International Conference on Knowledge Discov-
ery and Data Mining (New York, NY, USA, 2005), ACM Press,
pp. 499–508.

7

